K-svd: Design of Dictionaries for Sparse Representation
نویسندگان
چکیده
In recent years there is a growing interest in the study of sparse representation for signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Recent activity in this field concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. In this paper we propose a novel algorithm – the K-SVD algorithm – generalizing the K-Means clustering process, for adapting dictionaries in order to achieve sparse signal representations. We analyze this algorithm and demonstrate its results on both synthetic tests and in applications on real data.
منابع مشابه
Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملK-SVD and its Non-Negative Variant for Dictionary Design
In recent years there is a growing interest in the study of sparse representation for signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described as sparse linear combinations of these atoms. Recent activity in this field concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionar...
متن کاملCompression of facial images using the K-SVD algorithm
The use of sparse representations in signal and image processing is gradually increasing in the past several years. Obtaining an overcomplete dictionary from a set of signals allows us to represent them as a sparse linear combination of dictionary atoms. Pursuit algorithms are then used for signal decomposition. A recent work introduced the K-SVD algorithm, which is a novel method for training ...
متن کاملK-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activit...
متن کاملA Fuzzy Adaptive K-SVD Dictionary Algorithm for Face Recogntion
Sparse representations using overcomplete dictionaries has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. The K-SVD algorithm is an iterati...
متن کامل